Publications

For an up to date list of publications see Dr. Armstrong’s Google Scholar page

2024

34.       Pickles I.B., Chen Y., Moroz O., Brown H.A., de Boer C., Armstrong Z., McGregor N., Artola M., Codée J.D.C., Koropatkin N.M, Overkleeft H.S., Davies G.J. (2024) Precision Activity-Based α-Amylase Probes for Dissection and Annotation of Linear and Branched-Chain Starch-Degrading Enzymes. Angew. Chem. Int. Ed. , e202415219

 33.       Koemans T., Bennett M., Ferraz M.J., Armstrong Z., Artola M., Aerts J.M.F.G.,  Codée J.D.C, Overkleeft H.S., Davies G.J. (2024) Structure-guided design of C3-branched swainsonine as potent and selective human Golgi α-mannosidase (GMII) inhibitor. Chemical Communications. 60, 11734-11737

 32.       Thaler M., Ofman T. P., Kok K., Heming J., Moran E., Pickles I., Leijs A. A., van den Nieuwendijk A.M.C.H.,  van den Berg R.J.B.H.N, Ruijgrok G., Armstrong Z.,  Salgado-Benvindo C., Ninaber D.K., Snijder E.J., van Boeckel C.A.A., Artola M.,  Davies G.J., Overkleeft H.S., van Hemert M.J. (2024)  Epi-Cyclophellitol Cyclosulfate, a Mechanism-Based Endoplasmic Reticulum α-Glucosidase II Inhibitor, Blocks Replication of SARS-CoV-2 and Other Coronaviruses. ACS Central Science. 10, 8, 1594–1608     

 31.       Ofman T. P., Heming J., Nin‐Hill A., Küllmer F., Moran E., Bennett M., Steneker R., Klein A-M., Ruijgrok G., Kok K., Armstrong Z., Aerts J.F.M.G., van der Marel G. A., Rovira C., Davies G. J., Artola M., Codée J.D.C., Overkleeft H.S. (2024) Conformational and Electronic Variations in 1,2‐and 1,5a‐Cyclophellitols and their Impact on Retaining α‐Glucosidase Inhibition. Chemistry–A European Journal. e202400723

 30.       Chen Y., van den Nieuwendijk A. M. C. H., Wu L., Moran E., Skoulikopoulou F., van Riet V., Overkleeft H.S., Davies G. J., Armstrong Z. (2024) Molecular Basis for Inhibition of Heparanases and β-Glucuronidases by Siastatin B. Journal of the American Chemical Society. 146, 1, 125–133

2023

29.       Borlandelli V., Offen W., Moroz O., Nin-Hill A., McGregor N., Binkhorst L., Ishiwata A., Armstrong Z., Artola M., Rovira C., Davies G. J., Overkleeft H.S. (2023) β-L-Arabinofurano-cyclitol Aziridines Are Covalent Broad-Spectrum Inhibitors and Activity-Based Probes for Retaining β-l-Arabinofuranosidases. ACS Chemical Biology, 18, 12, 2564–2573.

 28.       Li J., Sharma M. Meek R., Alhifthi A., Armstrong Z., Soler N. M., Lee M., Goddard-Borger E. D., Blaza J. N., Davies G. J., Williams S. J. (2023) Molecular basis of sulfolactate synthesis by sulfolactaldehyde dehydrogenase from Rhizobium leguminosarum. Chemical Science, 14, 11429-11440.

 27.       Borlandelli V., Armstrong Z., Nin‐Hill A., Codée J.D.C., Raich L., Artola M., Rovira C., Davies G.J., Overkleeft H.S. (2023) 4‐O‐Substituted Glucuronic Cyclophellitols are Selective Mechanism‐Based Heparanase Inhibitors. ChemMedChem, 8, 14, e202200580

 26.     Doherty G.G., Ler G.J.M, Wimmer N., Bernhardt P.V., Ashmus R.A., Vocadlo D.J., Armstrong Z., Davies G.J., Maccarana M., Li J.-P., Kayal Y., Ferro V. (2023) Synthesis of Uronic Acid 1-Azasugars as Putative Inhibitors of α-Iduronidase, β-Glucuronidase and Heparanase. ChemBioChem, 24, e202200619

2022

 25.       Armstrong Z., Meek R.W., Wu L., Blaza J.N., Davies G.J. (2022) Cryo-EM structures of human fucosidase FucA1 reveal insight into substrate recognition and catalysis. Structure, 30, 1-9

24.       de Boer C., Armstrong Z.†, Lit V.A.J, Barash U., Ruijgrok G., Boyango I., Weitzenberg M. M. , Schröder S. P., Sarris A.J.C., Meeuwenoord N.J., Bule P., Kayal Y., Ilan N., Codée J.D.C., Vlodavsky I., Overkleeft H.S., Davies G.J., Wu L. (2022) Mechanism-based heparanase inhibitors reduce cancer metastasis in vivo. Proceedings of the National Academy of Sciences, 119, 31, e2203167119

 23.       Liu F., Chen H.-M., Armstrong Z., Withers S.G. (2022) Azido Groups Hamper Glycan Acceptance by Carbohydrate Processing Enzymes. ACS Central Science, 8, 5, 656–662

 22.       Scott H., Davies G. J., Armstrong Z. (2022) The structure of Phocaeicola vulgatus sialic acid acetylesterase. Acta Crystallographica Section D, 78, 647–657

 21.       McGregor N., Kuo C-L., Beenakker T., Wong C-S., Offen W., Armstrong Z., Florea B., Codée J., Overkleeft H. S., Aerts J. M. F. G., Davies G. J. (2022) Synthesis of broad-specificity activity-based probes for exo-β-mannosidases. Organic & Biomolecular Chemistry, 20, 877-886 

2021

20.       Chen Y., Armstrong Z.†, Artola M., de Boer C., Florea,B. I. van der Marel,G.A., Codée, J. D. C., Aerts, J. M. F. G., Davies G., Overkleeft H. (2021) Activity-based protein profiling of retaining α-amylases in complex biological samples. Journal of the American Chemical Society, 143 (5), 2423-2432

2020

 19.       Fonseca M., Armstrong Z., Withers S.G., Briers Y. (2020) High-throughput generation of product profiles for arabinoxylan-active enzymes from metagenomes. Applied and Environmental Microbiology, 86 (23)

 18.       Nieto-Dominguez M., Fernandez de Toro B., de Eugenio L., Santana A., Bejarano-Muñoz L., Armstrong Z., Asensio J., Prieto A., Withers S.G., Cañada F. (2020) Active site mutation of fungal β-xylosidase from the GH3 family reveals outstanding acceptor tolerance: From thio- to multi-glycoligases. Nature Communications, 11:4864

 17.       Armstrong Z. †, Kuo C-L., Lahav D., Liu B., Johnson R., Beenakker T. J. M., de Boer C., Wong C-S., van Rijssel E. R., Debets M. F., Florea B., Boot R. G., Ovaa H., van der Stelt M., Codée J., Aerts J. M. F. G., Wu L., Overkleeft H., Davies G. (2020) Manno-epi-cyclophellitols Enable Activity-Based Protein Profiling of Human α-Mannosidases and Discovery of New Golgi Mannosidase II Inhibitors. Journal of the American Chemical Society, 142(30) 13021–13029

16. Morgan-Lang C., McLaughlin R., Zhang G., Chan K., Armstrong Z., Konwar K., and Hallam S. J. (2020) TreeSAPP: Phylogenetic Tree-based Sensitive and Accurate Protein Profiling. Bioinformatics, 36 (18), 4706-4713

 15.       Armstrong Z, Davies G. (2020) Structure and function of Bs164 β-mannosidase from Bacteroides salyersiae the founding member of glycoside hydrolase family GH164. Journal of Biological Chemistry, 295(13) 4316–4326  *Highlighed in a virtual issue on the microbiome: www.jbc.org/site/vi/microbiome/

2019

 14.       Wu L., Armstrong Z., Schröder S. P., de Boer C., Artola M., Aerts J. M. F. G., Overkleeft H. S., Davies G. (2019) An overview of activity-based probes for glycosidases. Current Opinion in Chemical Biology, 53 25-36

 13.       Armstrong Z., Liu F., Kheirandish S., Chen H-M., Mewis K., Duo T., Morgan-Lang C., Hallam S. J., Withers S. G., (2019) High-Throughput Recovery and Characterization of Metagenome-Derived Glycoside Hydrolase-Containing Clones as a Resource for Biocatalyst Development. mSystems, 4(4) e00082-19

 12.       Macdonald S., Armstrong Z., Morgan-Lang C., Osowiecka M., Robinson K., Hallam S.J., Withers S.G., (2019) Development and Application of a High-Throughput Functional Metagenomic Screen for Glycoside Phosphorylases. Cell Chemical Biology, 26(7,) 1001-1012

 11.       Armstrong Z., Liu F., Chen H.M, Hallam S.J., Withers S.G., (2019) Systematic Screening of Synthetic Gene-Encoded Enzymes for Synthesis of Modified Glycosides. ACS Catalysis 9 (4), 3219-3227

2018

 10.       Armstrong Z. †, Mewis K., Liu F., Scofield M., Durno E., Chen H.M., Mehr K., Withers S.G., Hallam S.J., (2018) Metagenomics Reveals Functional Specialization and Novel Polysaccharide Utilization Loci in the Castor canadensis Fecal Microbiome. The ISME Journal, 12 (11), 2757

 9.         The CAZypedia Consortium (2018) Ten years of CAZypedia: a living encyclopedia of carbohydrate-active enzymes. Glycobiology, 28 (1) 3-8

2017

 8.         Armstrong Z., Rahfeld P., Withers S.G. (2017) Discovery of New Glycosidases from Metagenomic Libraries. Methods in Enzymology, 597, 3-23

2016

  7.         Nieto-Domínguez M., Prieto A., de Toro B.F., Barriuso J., Armstrong Z., Withers S.G., Eugenio L.I., Martínez M.J. (2016) Enzymatic fine-tuning for 2-(6-hydroxynaphthyl) β-D-xylopyranoside synthesis catalyzed by the recombinant β-xylosidase BxTW1 from Talaromyces amestolkiae. Microbial Cell Factories, 15 (1), 171

6.         Chen H.M., Armstrong Z., Hallam S.J., Withers S.G. (2016) Synthesis and evaluation of a series of 6-chloro-4-methylumbelliferyl glycosides as fluorogenic reagents for screening metagenomic libraries for glycosidase activity. Carbohydrate Research, 421, 33-39

2010-2015

 5.         Armstrong Z., Mewis K., Strachan C., Hallam S.J. (2015) Biocatalysts for biomass deconstruction from environmental genomics. Current Opinion in Chemical Biology, 29, 18-25

 4.         Armstrong Z., Withers S. G. (2013) Synthesis of glycans and glycopolymers through engineered enzymes. Biopolymers, 99 (10), 666-674

 3.         Mewis K., Armstrong Z., Song Y.C., Baldwin S.A., Withers S.G., Hallam S.J. (2013) Biomining active cellulases from a mining bioremediation system. Journal of Biotechnology, 167 (4), 462-471

 2.         Singh, R., Grigg, J.C., Armstrong, Z., Murphy, M.E.P., Eltis, L.D. (2012) Distal Heme Pocket Residues of B-type Dye-decolorizing Peroxidase: Arginine but not Aspartate is Essential for Peroxidase Activity. Journal of Biological Chemistry, 287 (13): 10623-10630

 1.         Armstrong Z., Reitinger S., Kantner T., Withers S. G. (2010) Enzymatic thioxyloside synthesis: characterization of thioglycoligase variants identified from a site-saturation mutagenesis library of Bacillus circulans xylanase. ChemBioChem, 2010 Mar 1;11(4):533-8.